Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.072
Filtrar
1.
FASEB J ; 38(8): e23623, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38656660

RESUMO

The nuclear transport of proteins plays an important role in mediating the transition from egg to embryo and distinct karyopherins have been implicated in this process. Here, we studied the impact of KPNA2 deficiency on preimplantation embryo development in mice. Loss of KPNA2 results in complete arrest at the 2cell stage and embryos exhibit the inability to activate their embryonic genome as well as a severely disturbed nuclear translocation of Nucleoplasmin 2. Our findings define KPNA2 as a new maternal effect gene.


Assuntos
Desenvolvimento Embrionário , alfa Carioferinas , Animais , Feminino , Camundongos , alfa Carioferinas/metabolismo , alfa Carioferinas/genética , Desenvolvimento Embrionário/genética , Fertilidade/genética , Camundongos Knockout , Herança Materna , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Gravidez , Nucleoplasminas/metabolismo , Nucleoplasminas/genética , Blastocisto/metabolismo
2.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 241-247, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650127

RESUMO

Oral squamous cell carcinoma (OSCC) is a common malignant tumor. Importin7 (IPO7) is responsible for nucleoplasmic transport of RNAs and proteins, and it has been confirmed to be involved in the development of human cancers. This study aimed to explore the function and mechanism of IPO7 in OSCC. IPO7 expression in tissues and cells was determined by RT-qPCR. Cell proliferative, migratory, and invasive capabilities were detected through transwell assay and colony formation assay. Mice xenograft models were established for evaluating tumor growth. Autophagy was estimated by the LC3 levels in cells through western blot and immunofluorescence (IF). Western blot was utilized to detect the key proteins in PERK/EIF2AK3/ATF4 pathway for assessing the endoplasmic reticulum stress (ERS). The interaction of IPO7 and homeobox A10 (HOXA10) was tested by GST pull-down assay and Co-IP assay. ChIP assay and luciferase reporter assay were utilized to determine the combination of HOXA10 and EIF2AK3. We proved that IPO7 was upregulated in OSCC tissues and cells, and its depletion reduced cell proliferation, migration, invasion and tumor growth. Furthermore, LC3 expression in cells was found to be reduced by IPO7 knockdown. IPO7 promoted OSCC tumor metastasis by activating autophagy. Additionally, we discovered that IPO7 could regulate ERS by activating the PERK/ATF4 pathway. EIF2AK3 upregulation can promote cell autophagy. Furthermore, IPO7 was proven to promote nuclear translocation of HOXA10 in cells. EIF2AK3 promoter can bind to HOXA10. Rescue assay confirmed that HOXA10 upregulation can reverse the effect of IPO7 silencing on OSCC progression. IPO7 can enhance proliferation, migration, invasion, and autophagy by nuclear translocation of HOXA10 and the activation of EIF2AK3/ATF4 pathway in OSCC.


Assuntos
Autofagia , Carcinoma de Células Escamosas , Movimento Celular , Núcleo Celular , Proliferação de Células , Proteínas Homeobox A10 , Proteínas de Homeodomínio , Neoplasias Bucais , alfa Carioferinas , eIF-2 Quinase , Humanos , Autofagia/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Movimento Celular/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Núcleo Celular/metabolismo , Camundongos , Estresse do Retículo Endoplasmático/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Transdução de Sinais , Carioferinas/metabolismo , Carioferinas/genética , Masculino , Camundongos Endogâmicos BALB C , Feminino , Invasividade Neoplásica
3.
Cells ; 13(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38534338

RESUMO

Stem cell maintenance and differentiation can be regulated via the differential activity of transcription factors within stem cells and their progeny. For these factors to be active, they need to be transported from their site of synthesis in the cytoplasm into the nucleus. A tissue-specific requirement for factors involved in nuclear importation is a potential mechanism to regulate stem cell differentiation. We have undertaken a characterization of male sterile importin alpha 1 (Dα1) null alleles in Drosophila and found that Dα1 is required for maintaining germline stem cells (GSCs) in the testis niche. The loss of GSCs can be rescued by ectopic expression of Dα1 within the germline but the animals are still infertile, indicating a second role for Dα1 in spermatogenesis. Expression of a Dα1 dominant negative transgene in GSCs confirmed a functional requirement for Dα1 in GSC maintenance but expression of the transgene in differentiating spermatogonia did not exhibit a phenotype indicating a specific role for Dα1 within GSCs. Our data indicate that Dα1 is utilized as a regulatory protein within GSCs to facilitate nuclear importation of proteins that maintain the stem cell pool.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Masculino , Drosophila/metabolismo , Testículo/metabolismo , Proteínas de Drosophila/metabolismo , alfa Carioferinas/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco , Fatores de Transcrição/metabolismo , Espermatogônias/metabolismo
4.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488622

RESUMO

The nuclear translocation of YAP1 is significantly implicated in the proliferation, stemness, and metastasis of cancer cells. Although the molecular basis underlying YAP1 subcellular distribution has been extensively explored, it remains to be elucidated how the nuclear localization signal guides YAP1 to pass through the nuclear pore complex. Here, we define a globular type of nuclear localization signal composed of folded WW domains, named as WW-NLS. It directs YAP1 nuclear import through the heterodimeric nuclear transport receptors KPNA-KPNB1, bypassing the canonical nuclear localization signal that has been well documented in KPNA/KPNB1-mediated nuclear import. Strikingly, competitive interference with the function of the WW-NLS significantly attenuates YAP1 nuclear translocation and damages stemness gene activation and sphere formation in malignant breast cancer cells. Our findings elucidate a novel globular type of nuclear localization signal to facilitate nuclear entry of WW-containing proteins including YAP1.


Assuntos
Núcleo Celular , Sinais de Localização Nuclear , Proteínas de Sinalização YAP , Humanos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteínas/metabolismo , Domínios WW , Proteínas de Sinalização YAP/química , Proteínas de Sinalização YAP/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
5.
J Gen Virol ; 105(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38441555

RESUMO

Adeno-associated viruses (AAV) are one of the world's most promising gene therapy vectors and as a result, are one of the most intensively studied viral vectors. Despite a wealth of research into these vectors, the precise characterisation of AAVs to translocate into the host cell nucleus remains unclear. Recently we identified the nuclear localization signals of an AAV porcine strain and determined its mechanism of binding to host importin proteins. To expand our understanding of diverse AAV import mechanisms we sought to determine the mechanism in which the Cap protein from a bat-infecting AAV can interact with transport receptor importins for translocation into the nucleus. Using a high-resolution crystal structure and quantitative assays, we were able to not only determine the exact region and residues of the N-terminal domain of the Cap protein which constitute the functional NLS for binding with the importin alpha two protein, but also reveal the differences in binding affinity across the importin-alpha isoforms. Collectively our results allow for a detailed molecular view of the way AAV Cap proteins interact with host proteins for localization into the cell nucleus.


Assuntos
Quirópteros , Dependovirus , Animais , Suínos , Transporte Ativo do Núcleo Celular , Dependovirus/genética , Proteínas do Capsídeo/genética , Carioferinas , Sinais de Localização Nuclear , alfa Carioferinas/genética
6.
FEBS Lett ; 598(7): 801-817, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369616

RESUMO

Secretory proteins of Plasmodium exhibit differential spatial and functional activity within the host cell nucleus. However, the nuclear localization signals (NLSs) for these proteins remain largely uncharacterized. In this study, we have identified and characterized two NLSs in the circumsporozoite protein of Plasmodium falciparum (Pf-CSP). Both NLSs in the Pf-CSP contain clusters of lysine and arginine residues essential for specific interactions with the conserved tryptophan and asparagine residues of importin-α, facilitating nuclear translocation of Pf-CSP. While the two NLSs of Pf-CSP function independently and are both crucial for nuclear localization, a single NLS of Pf-CSP leads to weak nuclear localization. These findings shed light on the mechanism of nuclear penetrability of secretory proteins of Plasmodium proteins.


Assuntos
Sinais de Localização Nuclear , Plasmodium falciparum , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/metabolismo , alfa Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Núcleo Celular/metabolismo
7.
Sci Rep ; 14(1): 3376, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336912

RESUMO

KPNA1 is a mediator of nucleocytoplasmic transport that is abundantly expressed in the mammalian brain and regulates neuronal differentiation and synaptic function. De novo mutations in Kpna1 have been identified using genome-wide association studies in humans with schizophrenia; however, it remains unclear how KPNA1 contributes to schizophrenia pathogenesis. Recent studies have suggested a complex combination of genetic and environmental factors that are closely related to psychiatric disorders. Here, we found that subchronic administration of phencyclidine, a psychotropic drug, induced vulnerability and behavioral abnormalities consistent with the symptoms of schizophrenia in Kpna1-deficient mice. Microarray assessment revealed that the expression levels of dopamine d1/d2 receptors, an RNA editing enzyme, and a cytoplasmic dynein component were significantly altered in the nucleus accumbens brain region in a gene-environment (G × E) interaction-dependent manner. Our findings demonstrate that Kpna1-deficient mice may be useful as a G × E interaction mouse model for psychiatric disorders and for further investigation into the pathogenesis of such diseases and disorders.


Assuntos
Esquizofrenia , Humanos , Camundongos , Animais , Esquizofrenia/induzido quimicamente , Esquizofrenia/genética , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Psicotrópicos/farmacologia , Fenciclidina/farmacologia , Núcleo Accumbens/metabolismo , Mamíferos/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
8.
Mol Plant Pathol ; 25(1): e13422, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38279848

RESUMO

Karyopherins, the nucleocytoplasmic transporters, participate in multiple RNA silencing stages by transporting associated proteins into the nucleus. Importin α is a member of karyopherins and has been reported to facilitate virus infection via nuclear import of viral proteins. Unlike other RNA viruses, silencing of importin α2 (α2i) by virus-induced gene silencing (VIGS) boosted the titre of bamboo mosaic virus (BaMV) in protoplasts, and inoculated and systemic leaves of Nicotiana benthamiana. The enhanced BaMV accumulation in importin α2i plants was linked to reduced levels of RDR6-dependent secondary virus-derived small-interfering RNAs (vsiRNAs). Small RNA-seq revealed importin α2 silencing did not affect the abundance of siRNAs derived from host mRNAs but significantly reduced the 21 and 22 nucleotide vsiRNAs in BaMV-infected plants. Deletion of BaMV TGBp1, an RNA silencing suppressor, compromised importin α2i-mediated BaMV enhancement. Moreover, silencing of importin α2 upregulated NbAGO10a, a proviral protein recruited by TGBp1 for BaMV vsiRNAs clearance, but hindered the nuclear import of NbAGO10a. Taken together, these results indicate that importin α2 acts as a negative regulator of BaMV invasion by controlling the expression and nucleocytoplasmic shuttling of NbAGO10a, which removes vsiRNAs via the TGBp1-NbAGO10a-SDN1 pathway. Our findings reveal the hidden antiviral mechanism of importin α2 in countering BaMV infection in N. benthamiana.


Assuntos
Potexvirus , alfa Carioferinas , Interferência de RNA , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Nicotiana/genética , Potexvirus/genética , RNA Viral/genética , RNA Interferente Pequeno/metabolismo
9.
Sci Rep ; 14(1): 1322, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225348

RESUMO

Interleukin-1α (IL-1α), a cytokine released by necrotic cells, causes sterile inflammation. On the other hand, IL-1α is present in the nucleus and also regulates the expression of many proteins. A protein substrate containing a classical nuclear localization signal (cNLS) typically forms a substrate/importin α/ß complex, which is subsequently transported to the nucleus. To the best of our knowledge, no study has directly investigated whether IL-1α-which includes cNLS-is imported into the nucleus in an importin α/ß-dependent manner. In this study, we noted that all detected importin α subtypes interacted with IL-1α. In HeLa cells, importin α1-mediated nuclear translocation of IL-1α occurred at steady state and was independent of importin ß1. Importin α1 not only was engaged in IL-1α nuclear transport but also concurrently functioned as a molecule that regulated IL-1α protein level in the cell. Furthermore, we discussed the underlying mechanism of IL-1α nuclear translocation by importin α1 based on our findings.


Assuntos
Transporte Ativo do Núcleo Celular , Interleucina-1alfa , alfa Carioferinas , Humanos , Transporte Ativo do Núcleo Celular/fisiologia , alfa Carioferinas/metabolismo , Núcleo Celular/metabolismo , Células HeLa , Interleucina-1alfa/metabolismo , Sinais de Localização Nuclear/metabolismo
10.
Sci Rep ; 14(1): 2048, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267508

RESUMO

In eukaryotes, the ubiquitin-proteasome system is an essential pathway for protein degradation and cellular homeostasis. 26S proteasomes concentrate in the nucleus of budding yeast Saccharomyces cerevisiae due to the essential import adaptor protein Sts1 and the karyopherin-α protein Srp1. Here, we show that Sts1 facilitates proteasome nuclear import by recruiting proteasomes to the karyopherin-α/ß heterodimer. Following nuclear transport, the karyopherin proteins are likely separated from Sts1 through interaction with RanGTP in the nucleus. RanGTP-induced release of Sts1 from the karyopherin proteins initiates Sts1 proteasomal degradation in vitro. Sts1 undergoes karyopherin-mediated nuclear import in the absence of proteasome interaction, but Sts1 degradation in vivo is only observed when proteasomes successfully localize to the nucleus. Sts1 appears to function as a proteasome import factor during exponential growth only, as it is not found in proteasome storage granules (PSGs) during prolonged glucose starvation, nor does it appear to contribute to the rapid nuclear reimport of proteasomes following glucose refeeding and PSG dissipation. We propose that Sts1 acts as a single-turnover proteasome nuclear import factor by recruiting karyopherins for transport and undergoing subsequent RanGTP-initiated ubiquitin-independent proteasomal degradation in the nucleus.


Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal , alfa Carioferinas , beta Carioferinas , Glucose , Carioferinas , Complexo de Endopeptidases do Proteassoma , Ubiquitina
11.
Biochim Biophys Acta Proteins Proteom ; 1872(2): 140974, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065227

RESUMO

NEIL glycosylases, including NEIL1, NEIL2, and NEIL3, play a crucial role in the base excision DNA repair pathway (BER). The classical importin pathway mediated by importin α/ß and cargo proteins containing nuclear localization sequences (NLS) is the most common transport mechanism of DNA repair proteins to the nucleus. Previous studies have identified putative NLSs located at the C-terminus of NEIL3 and NEIL1. Crystallographic, bioinformatics, calorimetric (ITC), and fluorescence assays were used to investigate the interaction between NEIL1 and NEIL3 putative NLSs and importin-α (Impα). Our findings showed that NEIL3 contains a typical cNLS, with medium affinity for the major binding site of Impα. In contrast, crystallographic analysis of NEIL1 NLS revealed its binding to Impα, but with high B-factors and a lack of electron density at the linker region. ITC and fluorescence assays indicated no detectable affinity between NEIL1 NLS and Impα. These data suggest that NEIL1 NLS is a non-classical NLS with low affinity to Impα. Additionally, we compared the binding mode of NEIL3 and NEIL1 with Mus musculus Impα to human isoforms HsImpα1 and HsImpα3, which revealed interesting binding differences for HsImpα3 variant. NEIL3 is a classical medium affinity monopartite NLS, while NEIL1 is likely to be an unclassical low-affinity bipartite NLS. The base excision repair pathway is one of the primary systems involved in repairing DNA. Thus, understanding the mechanisms of nuclear transport of NEIL proteins is crucial for comprehending the role of these proteins in DNA repair and disease development.


Assuntos
DNA Glicosilases , alfa Carioferinas , Animais , Camundongos , Humanos , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Sinais de Localização Nuclear/genética , DNA Glicosilases/metabolismo
12.
Plant Biotechnol J ; 22(3): 572-586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37855813

RESUMO

Barley yellow dwarf viruses (BYDVs) cause widespread damage to global cereal crops. Here we report a novel strategy for elevating resistance to BYDV infection. The 17K protein, a potent virulence factor conserved in BYDVs, interacted with barley IMP-α1 and -α2 proteins that are nuclear transport receptors. Consistently, a nuclear localization signal was predicted in 17K, which was found essential for 17K to be transported into the nucleus and to interact with IMP-α1 and -α2. Reducing HvIMP-α1 and -α2 expression by gene silencing attenuated BYDV-elicited dwarfism, accompanied by a lowered nuclear accumulation of 17K. Among the eight common wheat CRISPR mutants with two to four TaIMP-α1 and -α2 genes mutated, the triple mutant α1aaBBDD /α2AAbbdd and the tetra-mutant α1aabbdd /α2AAbbDD displayed strong BYDV resistance without negative effects on plant growth under field conditions. The BYDV resistance exhibited by α1aaBBDD /α2AAbbdd and α1aabbdd /α2AAbbDD was correlated with decreased nuclear accumulation of 17K and lowered viral proliferation in infected plants. Our work uncovers the function of host IMP-α proteins in BYDV pathogenesis and generates the germplasm valuable for breeding BYDV-resistant wheat. Appropriate reduction of IMP-α gene expression may be broadly useful for enhancing antiviral resistance in agricultural crops and other economically important organisms.


Assuntos
Luteovirus , Triticum , Triticum/genética , alfa Carioferinas/genética , Resistência à Doença/genética , Melhoramento Vegetal , Luteovirus/genética , Produtos Agrícolas/genética , Expressão Gênica , Doenças das Plantas/genética
13.
Protein Sci ; 33(2): e4876, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38108201

RESUMO

Nucleocytoplasmic transport regulates the passage of proteins between the nucleus and cytoplasm. In the best characterized pathway, importin (IMP) α bridges cargoes bearing basic, classical nuclear localization signals (cNLSs) to IMPß1, which mediates transport through the nuclear pore complex. IMPα recognizes three types of cNLSs via two binding sites: the major binding site accommodates monopartite cNLSs, the minor binding site recognizes atypical cNLSs, while bipartite cNLSs simultaneously interact with both major and minor sites. Despite the growing knowledge regarding IMPα-cNLS interactions, our understanding of the evolution of cNLSs is limited. We combined bioinformatic, biochemical, functional, and structural approaches to study this phenomenon, using polyomaviruses (PyVs) large tumor antigens (LTAs) as a model. We characterized functional cNLSs from all human (H)PyV LTAs, located between the LXCXE motif and origin binding domain. Surprisingly, the prototypical SV40 monopartite NLS is not well conserved; HPyV LTA NLSs are extremely heterogenous in terms of structural organization, IMPα isoform binding, and nuclear targeting abilities, thus influencing the nuclear accumulation properties of full-length proteins. While several LTAs possess bipartite cNLSs, merkel cell PyV contains a hybrid bipartite cNLS whose upstream stretch of basic amino acids can function as an atypical cNLS, specifically binding to the IMPα minor site upon deletion of the downstream amino acids after viral integration in the host genome. Therefore, duplication of a monopartite cNLS and subsequent accumulation of point mutations, optimizing interaction with distinct IMPα binding sites, led to the evolution of bipartite and atypical NLSs binding at the minor site.


Assuntos
Antígenos de Neoplasias , Sinais de Localização Nuclear , alfa Carioferinas , Humanos , Transporte Ativo do Núcleo Celular/fisiologia , alfa Carioferinas/genética , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Sequência de Aminoácidos , Antígenos de Neoplasias/metabolismo , Núcleo Celular/metabolismo , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo
14.
J Virol ; 97(10): e0072723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37819133

RESUMO

IMPORTANCE: Type I interferon (IFN) signaling plays a principal role in host innate immune responses against invading viruses. Viruses have evolved diverse mechanisms that target the Janus kinase-signal transducer and activator of transcription (STAT) signaling pathway to modulate IFN response negatively. Seneca Valley virus (SVV), an emerging porcine picornavirus, has received great interest recently because it poses a great threat to the global pork industry. However, the molecular mechanism by which SVV evades host innate immunity remains incompletely clear. Our results revealed that SVV proteinase (3Cpro) antagonizes IFN signaling by degrading STAT1, STAT2, and IRF9, and cleaving STAT2 to escape host immunity. SVV 3Cpro also degrades karyopherin 1 to block IFN-stimulated gene factor 3 nuclear translocation. Our results reveal a novel molecular mechanism by which SVV 3Cpro antagonizes the type I IFN response pathway by targeting STAT1-STAT2-IRF9 and karyopherin α1 signals, which has important implications for our understanding of SVV-evaded host innate immune responses.


Assuntos
Proteases Virais 3C , Interferon Tipo I , Picornaviridae , Animais , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Carioferinas , Picornaviridae/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Suínos , Proteases Virais 3C/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , alfa Carioferinas/metabolismo , Transdução de Sinais
15.
EMBO Mol Med ; 15(11): e15984, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37792911

RESUMO

Cell signaling is central to neuronal activity and its dysregulation may lead to neurodegeneration and cognitive decline. Here, we show that selective genetic potentiation of neuronal ERK signaling prevents cell death in vitro and in vivo in the mouse brain, while attenuation of ERK signaling does the opposite. This neuroprotective effect mediated by an enhanced nuclear ERK activity can also be induced by the novel cell penetrating peptide RB5. In vitro administration of RB5 disrupts the preferential interaction of ERK1 MAP kinase with importinα1/KPNA2 over ERK2, facilitates ERK1/2 nuclear translocation, and enhances global ERK activity. Importantly, RB5 treatment in vivo promotes neuroprotection in mouse models of Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) disease, and enhances ERK signaling in a human cellular model of HD. Additionally, RB5-mediated potentiation of ERK nuclear signaling facilitates synaptic plasticity, enhances cognition in healthy rodents, and rescues cognitive impairments in AD and HD models. The reported molecular mechanism shared across multiple neurodegenerative disorders reveals a potential new therapeutic target approach based on the modulation of KPNA2-ERK1/2 interactions.


Assuntos
Sistema de Sinalização das MAP Quinases , Neuroproteção , Animais , Humanos , Camundongos , alfa Carioferinas/farmacologia , Cognição , Fosforilação , Transdução de Sinais
16.
Res Vet Sci ; 164: 104994, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696109

RESUMO

While importin-α is well studied in mammals, the knowledge in avian species is still limited. In this study, we compared the mRNA expression patterns of five importin-α isoforms in the respiratory tract, liver, and spleen of chickens, turkeys, and pekin ducks in two different age-groups. In addition, we determined the distribution of importin-α in selected tissue of conchae, trachea, and lung of post-hatch chickens at all cellular levels by immunohistochemical staining. Our results indicate that importin-α3 is the most abundant isoform in the respiratory tract of chickens, turkeys, and pekin ducks. Moreover, importin-α is expressed as a gradient with lowest mRNA levels in the conchae and highest levels in the lung. The mRNA expression levels of most isoforms were higher in tissues from post-hatch chickens and turkeys in comparison to the corresponding embryos. In contrast to that, duck embryos mostly show higher mRNA expression levels of importin-α than post-hatch ducks.


Assuntos
Galinhas , Aves Domésticas , Animais , Galinhas/genética , Galinhas/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Patos/genética , Perus/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos
17.
Curr Opin Virol ; 62: 101361, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37672874

RESUMO

Microtubule transport and nuclear import are functionally connected, and the nuclear pore complex (NPC) can interact with microtubule motors. For several alphaherpesvirus proteins, nuclear localization signals (NLSs) and their interactions with specific importin-α proteins have been characterized. Here, we review recent insights on the roles of microtubule motors, capsid-associated NLSs, and importin-α proteins for capsid transport, capsid docking to NPCs, and genome release into the nucleoplasm, as well as the role of importins for nuclear viral transcription, replication, capsid assembly, genome packaging, and nuclear capsid egress. Moreover, importin-α proteins exert antiviral effects by promoting the nuclear import of transcription factors inducing the expression of interferons (IFN), cytokines, and IFN-stimulated genes, and the IFN-inducible MxB restricts capsid docking to NPCs.


Assuntos
Alphaherpesvirinae , Herpes Simples , Humanos , Carioferinas , alfa Carioferinas/genética , Poro Nuclear , Proteínas do Capsídeo
18.
Cancer Biol Ther ; 24(1): 2235770, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37575080

RESUMO

INTRODUCTION: Sirtuin 1 (SIRT1) is a key modulator in several types of cancer, including colorectal cancer (CRC). Here, we probed into the molecular mechanism of SIRT1 regulating the development and chemoresistance of CRC. METHODS: Differentially expressed genes related to the growth, metastasis and chemoresistance of CRC were identified by bioinformatics analysis. The expression of SIRT1 in clinical tissues from CRC patients and CRC cell lines was detected by RT-qPCR. Interactions among SIRT1, p53, miR-101 and KPNA3 were analyzed. The effect of SIRT1 on the cell viability, migration, invasion, epithelial-mesenchymal transformation and chemoresistance to 5-FU was evaluated using loss-function investigations in CRC cells. Finally, a xenograft model of CRC and a metastasis model were constructed for further exploration of the roles of SIRT1 in vivo. RESULTS: SIRT1 was elevated in CRC tissues and cell lines. SIRT1 decreased p53 via deacetylation, and consequently downregulated the expression of miR-101 while increasing that of the miR-101 target gene KPNA3. By this mechanism, SIRT1 enhanced the proliferation, migration, invasion, epithelial-mesenchymal transformation, and resistance to 5-FU of CRC cells. In addition, in vivo data also showed that SIRT1 promoted the growth, metastasis and chemoresistance to 5-FU of CRC cells via regulation of the p53/miR-101/KPNA3 axis. CONCLUSIONS: In conclusion, SIRT1 can function as an oncogene in CRC by accelerating the growth, metastasis and chemoresistance to 5-FU of CRC cells through the p53/miR-101/KPNA3 axis.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , alfa Carioferinas/farmacologia
19.
Biophys J ; 122(17): 3476-3488, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542371

RESUMO

Using all-atom replica-exchange molecular dynamics simulations, we mapped the mechanisms of binding of the nuclear localization signal (NLS) sequence from Venezuelan equine encephalitis virus (VEEV) capsid protein to importin-α (impα) transport protein. Our objective was to identify the VEEV NLS sequence fragment that confers native, experimentally resolved binding to impα as well as to study associated binding energetics and conformational ensembles. The two selected VEEV NLS peptide fragments, KKPK and KKPKKE, show strikingly different binding mechanisms. The minNLS peptide KKPK binds non-natively and nonspecifically by adopting five diverse conformational clusters with low similarity to the x-ray structure 3VE6 of NLS-impα complex. Despite the prevalence of non-native interactions, the minNLS peptide still largely binds to the impα major NLS binding site. In contrast, the coreNLS peptide KKPKKE binds specifically and natively, adopting a largely homogeneous binding ensemble with a dominant, highly native-like conformational cluster. The coreNLS peptide retains most of native binding interactions, including π-cation contacts and a tryptophan cage. While KKPK binding is governed by a complex multistate free energy landscape featuring transitions between multiple binding poses, the coreNLS peptide free energy map is simple, exhibiting a single dominant native-like bound basin. We argue that the origin of the coreNLS peptide binding specificity is several electrostatic interactions formed by the two C-terminal amino acids, Lys10 and Glu11, with impα. The coreNLS sequence is then sufficient for native binding, but none of the amino acids flanking minNLS, including Lys10 and Glu11, are strictly necessary for the native pose. Our analyses indicate that the VEEV coreNLS sequence is virtually unique among human and viral proteins interacting with impα making it a potential target for VEEV-specific inhibitors.


Assuntos
Sinais de Localização Nuclear , Proteínas Nucleares , Humanos , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Carioferinas/metabolismo , alfa Carioferinas/metabolismo , Ligação Proteica , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Aminoácidos/metabolismo , Sítios de Ligação
20.
Inflammation ; 46(6): 2071-2088, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37432596

RESUMO

Atherosclerosis (AS), characterized by a maladaptive inflammatory response, is one of the most common causes of death among the elderly. Karyopherin subunit alpha 2 (KPNA2), a member of the nuclear transport protein family, has been reported to play a pro-inflammatory role in various pathological processes by regulating the nuclear translocation of pro-inflammatory transcription factors. However, the function of KPNA2 in AS remains unknown. ApoE-/- mice were fed high-fat diets for 12 weeks to establish an AS mice model. Human umbilical vein endothelial cells (HUVECs) were treated with lipopolysaccharide (LPS) to establish an AS cell model. We found that KPNA2 was upregulated in the aortic roots of atherosclerotic mice and LPS-stimulated cells. KPNA2 knockdown inhibited LPS-induced secretion of pro-inflammatory factors and monocyte-endothelial adhesion in HUVECs, whereas KPNA2 overexpression exerted the opposite effects. p65 and interferon regulatory factor 3 (IRF3), the transcription factors known to regulate the transcription of pro-inflammatory genes, interacted with KPNA2, and their nuclear translocations were blocked following KPNA2 silencing. Furthermore, we found that KPNA2 protein level was decreased by E3 ubiquitin ligase F-box and WD repeat domain containing 7 (FBXW7), which was downregulated in the atherosclerotic mice. FBXW7 overexpression induced ubiquitination with subsequent proteasomal degradation of KPNA2. Meanwhile, the effects of KPNA2 deficiency on atherosclerotic lesions were further confirmed by in vivo experiments. Taken together, our study indicates that KPNA2 downregulation, regulated by FBXW7, may alleviate endothelial dysfunction and related inflammation in the progression of AS by suppressing the nuclear translocation of p65 and IRF3.


Assuntos
Aterosclerose , Ubiquitina-Proteína Ligases , Humanos , Camundongos , Animais , Idoso , Ubiquitina-Proteína Ligases/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Células Endoteliais/metabolismo , Lipopolissacarídeos , Inflamação/patologia , alfa Carioferinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...